Novel laser machining of optical fibers for long cavities with low birefringence.

نویسندگان

  • Hiroki Takahashi
  • Jack Morphew
  • Fedja Oručević
  • Atsushi Noguchi
  • Ezra Kassa
  • Matthias Keller
چکیده

We present a novel method of machining optical fiber surfaces with a CO₂ laser for use in Fiber-based Fabry-Perot Cavities (FFPCs). Previously FFPCs were prone to large birefringence and limited to relatively short cavity lengths (≤ 200 μm). These characteristics hinder their use in some applications such as cavity quantum electrodynamics with trapped ions. We optimized the laser machining process to produce large, uniform surface structures. This enables the cavities to achieve high finesse even for long cavity lengths. By rotating the fibers around their axis during the laser machining process the asymmetry resulting from the laser's transverse mode profile is eliminated. Consequently we are able to fabricate fiber mirrors with a high degree of rotational symmetry, leading to remarkably low birefringence. Through measurements of the cavity finesse over a range of cavity lengths and the polarization dependence of the cavity linewidth, we confirmed the quality of the produced fiber mirrors for use in low-birefringence FFPCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical comparison analysis of long and short external cavity semiconductor laser

In this paper, considering optical feedback as an optical injection, and taking in to account round-trip time role in the external cavity, a standard small signal analysis is applied on laser rate equations. By considering the relaxation oscillation (f2) and external cavity frequencies (f) ratio for semiconductor laser, field amplitude response gain, optical phase and carrier number for long ex...

متن کامل

Nuclear Spin Optical Rotation in Organic Liquids

Nuclear spin induced optical rotation (NSOR) is a novel technique for the detection of nuclear magnetic resonance (NMR) via optical rotation instead of conventional pick-up coil. Originating from hyperfine interactions between nuclei and orbital electrons, NSOR provides a new method to reveal nuclear chemical environments in different molecules. Previous experiments of NSOR detection have poor ...

متن کامل

Polarization-locked temporal vector solitons in a fiber laser: theory

Stable polarization-locked temporal vector solitons are found in a saturable absorber mode-locked fiber laser with weak cavity birefringence. The system is theoretically modeled with two coupled complex Ginzburg– Landau equations that include fiber birefringence, spectral filtering, saturable gain, and slow saturable absorption. The solutions to this system are similar to those for elliptically...

متن کامل

Response of fiber lasers to an axial magnetic field.

An axial magnetic field induces circular birefringence in optical fibers, resulting in the rotation of the polarization angle for a linearly polarized input (Faraday effect). The rotation angle is linearly proportional to the magnitude of the applied field. Accurate measurements of the polarization angle variation provide a means for monitoring the magnetic field. The Faraday effect in optical ...

متن کامل

Polarization-locked temporal vector solitons in a fiber laser: experiment

We experimentally observe polarization-locked vector solitons in a passively mode-locked fiber laser. The vector soliton pulse is composed of components along both principal polarization axes of the linearly birefringent laser cavity. For certain values of birefringence and pulse energy these components propagate with a constant relative optical phase of 6p/2, and hence the pulse has a fixed el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 22 25  شماره 

صفحات  -

تاریخ انتشار 2014